

Open	Shading	Language	for	Blender

By	Michel	Anders

Copyright	2013,	2016	Michel	Anders

Blender	Market	Edition

	

Blender	Market	Edition,	License	Notes

This	ebook	is	licensed	for	your	personal	enjoyment	only.	This	ebook	may	not	be	re-sold	or	given
away	to	other	people.	If	you	would	like	to	share	this	book	with	another	person,	please	purchase	an
additional	copy	for	each	recipient.	If	you’re	reading	this	book	and	did	not	purchase	it,	or	it	was	not
purchased	for	your	use	only,	then	please	return	to	Blender	Market	and	purchase	your	own	copy.

Thank	you	for	respecting	the	hard	work	of	this	author

2

Table	of	Contents

Intro 4
What	are	OSL	shaders	good	for? 6
Reading	hints 8
Code	availability 8
A	very	simple	shader 9
Data	types 15
Control	structures 19
Points,	vectors	and	normals 26
Mapping	vectors 29
Patterns 33
Polka	dots 38
Leopard	shader 43
Diamondplate 54
Symmetry	operations 59
Victorian	era	cast	iron	covers 69
Ripples 80
Concrete	shader 86
Citrus	peel 95
Ceiling	plaster 101
A	mountain	shader 106
Lots	of	pretty	pictures 111
Hedge	shader 115
Grid	displays 123
Debugging	OSL	code 129
The	OSL	preprocessor 131
Additional	information 133

136

Intro

Who	should	read	this	book?

Anyone	who	wants	to	extend	his	or	her	skill	set	in	designing	materials.	Blenders	node	system	is
already	pretty	powerful	but	if	you	want	to	have	total	control	over	the	materials	you	design	for
Blenders	Cycles	renderer	or	if	you	want	to	have	some	specific	nodes	to	ease	your	work	flow,
learning	Open	Shading	Language	is	a	must.	Also	many	shaders	written	for	the	Renderman	(tm)
Shading	Language	are	fairly	easy	to	port	to	OSL.

What	kind	of	topics	will	be	covered?

This	book	focuses	on	writing	practical	shaders	which	means	you	can	download	the	code	and	use	it
as	is	or,	even	better,	learn	from	it	by	adapting	it	to	your	needs.	Often	even	details	in	the	code	are
explained	to	lower	the	learning	curve	but	on	the	other	hand	some	specialist	topics	not	specific	to
OSL	are	not	covered	(an	example	is	regular	expressions).	Each	shader	that	we	develop	is	covered	in
its	own	section	and	specific	areas	of	interest	are	listed	at	the	beginning	of	each	section.

Is	Open	Shading	Language	restricted	to	Blender?

In	principle	no:	Currently	V-Ray	supports	OSL	and	Autodesk	Beast	will	also	support	OSL	and	maybe
other	paid	3D	applications	will	support	it	once	it	gains	momentum,	but	at	this	moment	Blender	is
the	only	open	source	application	that	has	adapted	OSL.	This	might	well	change	in	the	future	as	OSL
is	well	documented	and	can	be	readily	adapted	to	other	renderers.

What	skills	do	I	need	to	benefit	from	this	book?

You	should	be	be	fairly	comfortable	in	using	Blender.	You	need	not	be	a	an	experienced	artist	but
you	should	know	your	way	around	and	know	how	to	create	materials	for	the	Cycles	renderer	with
Blender's	node	system.	You	should	also	know	how	to	program.	Again	you	needn't	be	a	seasoned
software	developer	but	it	certainly	helps	if	you	know	how	to	program	short	pieces	of	code	in	any
procedural	language	like	C,	C++,	Java,	Python	or	even	(visual)	Basic.	Open	Shading	Language	is	a	C-
like	language	and	quite	easy	to	learn.	It	doesn't	rely	on	concepts	like	object	orientation	nor	does	it
depend	on	hard	to	master	things	like	pointers	and	its	data	types	are	limited	but	adequate	for	the
job.	In	short,	logical	thinking	will	get	you	a	long	way	and	the	introductory	chapters	will	introduce
the	most	important	ideas.	If	you	can	program	a	short	program	that	lists	the	first	ten	even	integers
in	the	programming	language	of	your	choice	OSL	will	pose	no	problem.

Besides	programming,	writing	shaders	involves	some	math	and	geometry	as	well	but	nothing	above
high	school	math.	We	will	explain	each	math	issue	we	encounter	and	will	concentrate	on	how	to	use

4

things	without	delving	into	the	small	details.	Where	appropriate	links	to	relevant	topics	on	the	web
will	be	provided.

Where	can	I	find	more	about	Open	Shading	Language?

The	single	most	important	site	is	the	GitHub	repository	of	OSL.	Not	because	you	need	to	get	the
source	code	but	foremost	because	it	is	the	repository	of	the	OSL	Language	Specification.	Once	you
mastered	learning	Open	Shading	Language	for	Blender	you	will	find	the	Language	specification	a
valuable	reference.

In	the	appendices	I	list	some	additional	sites	which	are	worth	visiting	to	learn	more	about	OSL.

5

https://github.com/imageworks/OpenShadingLanguage/
https://github.com/imageworks/OpenShadingLanguage/raw/master/src/doc/osl-languagespec.pdf

What	are	OSL	shaders	good	for?
When	should	you	consider	programming	a	shader	in	OSL?	You	might	do	it	for	fun	of	course	but
even	then	you	need	to	balance	the	costs	versus	the	profits.	After	all	it	takes	time	to	learn	a	new
language	and	implementing	and	maintaining	shaders	takes	some	effort	too.	So	when	is	there	really
a	need	to	implement	a	shader	in	OSL?	The	following	criteria	may	help	you	decide:

A	shader	would	be	impossible	or	very	hard	to	create	in	Blender's	node	system

This	is	the	most	clear	cut	criterion.	Blender's	node	system	is	immensely	powerful	but	still	some
things	are	impossible.	For	example	OSL	provides	noise	types	like	Gabor	noise	that	you	might	want
to	use	but	that	Blender's	node	system	does	not	provide	(yet).	Regular	patterns	are	also	quite
difficult	or	impossible	to	generate	with	nodes	because	the	number	of	regular	texture	inputs	is
limited	to	wave,	gradient,	checker	and	brick.	Even	if	possible	a	node	system	might	need	an
enormous	amount	of	nodes.	Likewise	random	distributions	of	regular	elements	like	ripples	on	a
pond	caused	by	raindrops	are	hard.	Basically	anything	that	is	naturally	expressed	as	a	repetition	(a
programmed	loop)	or	has	many	decisions	to	make	(many	if/else	statements)	is	generally	easier	to
program	than	to	construct	from	nodes.

A	shader	based	on	nodes	would	take	to	much	memory

If	your	shader	would	use	image	textures	you	would	need	large	ones	to	be	able	to	zoom	in	close	and
get	good	results	even	if	the	shaded	part	covers	only	a	few	pixels.	A	procedural	shader	like	one
implemented	in	OSL	would	take	the	same	amount	of	memory	regardless	whether	you	need	high	or
low	resolution.	Of	course	it's	often	easier	to	use	image	textures	but	if	size	matters	you	might	want
to	create	such	textures	programmatically.	Being	able	to	produce	a	texture	at	any	level	of	detail
might	also	prevent	aliasing	effects	and	additionally	programmed	shaders	often	don't	depend	on	uv-
unwrapping.	Not	depending	on	uv-maps	saves	time	because	you	don't	have	to	create	one	but	also
might	get	rid	of	seams.	(when	uv-unwrapping	you	have	to	make	sure	that	seams	are	invisible	or
line	up	with	the	edges	of	a	tileable	image.)

A	shader	based	on	nodes	would	be	too	slow

Blender's	node	system	isn't	slow	at	all	but	if	you	need	very	many	nodes	to	implement	your	shader,
a	solution	that	is	bundled	in	a	single	OSL	shader	might	be	quite	a	bit	faster.	On	the	other	hand,	OSL
shaders	are	currently	limited	to	execution	on	the	CPU	and	therefore	cannot	benefit	from	the
potentially	must	faster	GPU.

So	the	real	answer	to	the	question	of	when	to	use	an	OSL	shader	is,	as	with	most	non-trivial
questions:	"it	depends".	It	is	possibly	easiest	to	cobble	together	a	first	approximation	of	the	shader
you	have	in	mind	from	nodes.	If	in	doing	so	the	number	of	nodes	needed	increases	quickly	or	you

6

encounter	things	that	cannot	be	done	at	all,	consider	writing	an	OSL	node.

7

Reading	hints
Typesetting	a	book	containing	a	fair	amount	of	source	code	is	fiendishly	difficult,	especially
because	you	have	to	allow	for	the	very	small	width	of	some	reading	devices.	Therefore	the	code	is
formatted	to	fit	very	short	line	widths	but	that	might	at	times	not	be	very	comfortable	to	read,	in
which	case	I	recommend	looking	at	the	original	source	code	(see	below)	which	is	generally	not
formatted.

It	might	also	be	a	good	idea	to	turn	off	overriding	the	stylesheets	associated	with	this	e-book.	Many
e-readers	(notably	Aldiko)	do	this	by	default,	which	is	fine	for	non-fiction	but	for	books	with	lots	of
illustrations	this	doesn't	look	good.	Disabling	this	override	let	you	enjoy	the	book	better.	In	most
readers	it	is	still	possible	to	separately	set	the	size	of	the	text.

Code	availability
The	source	code	shown	in	the	book	is	freely	available	on	GitHub:
https://github.com/varkenvarken/osl-shaders
The	source	code	is	licensed	as	open	source	under	a	GPLv3	license.

Note:	all	example	shaders	in	this	book	are	present	as	an	.osl	file	in	the	Shaders	directory	but	for
each	shader	file	there	is	also	an	accompanying	.blend	file	with	the	same	name	that	demonstrates	its
use.	Simply	by	opening	this	file	and	selecting	'Rendered'	as	display	mode	in	the	3d	view	will
showcase	the	shader.	(When	opening	the	file	Blender	sets	the	display	mode	to	solid	so	it	is
necessary	to	reset	this	to	rendered	to	see	the	effect.)

8

https://github.com/varkenvarken/osl-shaders

A	very	simple	shader
Focus	areas

how	to	prepare	Blender	to	use	Open	Shading	Language
creating	your	first	OSL	shader
trouble	shooting

Preparing	Blender

Because	most	errors	that	may	occur	when	working	with	OSL	will	appear	in	the	console,	it	is	a	good
idea	to	make	sure	the	console	is	visible.	For	unix-like	systems	like	Linux	or	OSX	this	is	done	by
starting	Blender	from	a	command	line	(for	example	an	xterm).	For	Windows	a	console	created	after
Blender	has	started	by	selecting	Window -> Toggle console.

Do	not	confuse	this	console	with	Blenders	built-in	Python	console,	that	is	a	completely	different
and	unrelated	entity.

OSL	is	currently	only	available	for	Cycles	(not	for	Blenders	internal	renderer)	so	we	have	to	check	if
all	prerequisites	are	met.

Open	a	new	Blender	file	with	just	a	single	object,	a	lamp	and	a	camera.

If	you	haven't	changed	your	startup	preferences	the	default	startup	will	do	or	alternatively
you	may	download	and	open	blank.blend	from	the	Shaders	directory	in	the	code
accompanying	this	book,

verify	that	you	have	selected	Cycles	as	your	renderer	as	shown	in	the	screen	shot

verify	that	you	will	use	the	CPU	to	render

(not	the	GPU	as	OSL	is	currently	only	available	on	the	CPU)
File -> User Preferences -> System

,

verify	that	OSL	is	enabled

Check	the	Open	Shading	Language	box	in	the	properties.

9

To	verify	that	everything	is	working	as	expected	you	must	be	able	to	work	with	the	node	editor.	A
suggested	layout	is	shown	below	(that	is	the	layout	that	blank.blend	has)

blank.blend	has	a	default	node	based	material	already	assigned	to	its	plane	but	if	the	object	in
your	startup	file	has	no	material	you	can	simply	assign	a	new	one	by	selecting	the	object	and
clicking	New	in	the	node	editor.

Creating	your	first	OSL	shader

If	you	have	written	a	shader	the	following	steps	are	needed	to	use	it	as	part	of	a	node	based
material:

add	a	new	script	node,
point	it	to	the	code	you	have	written,
connect	the	sockets	to	other	nodes.

Lets	have	a	closer	look	at	each	of	these	steps.

To	use	a	shader	as	a	new	node	in	Blenders	Cycles	renderer	we	must	add	a	Script	node	to	a	node
based	material.	Click	Add->Script->Script	in	the	node	editor	menu	and	a	new	node	is	added	to

10

your	material.	It	doesn't	have	any	input	or	output	sockets	yet	but	it	does	let	you	choose	either	an
external	script	(=	OSL	code	that	resides	in	a	text	file	on	disk)	or	an	internal	script	(=	OSL	code
present	in	one	of	Blenders	text	editor	buffers)

Each	method	is	fine	but	both	have	their	pros	and	cons.	An	external	file	is	easier	to	distribute	on	its
own	and	may	be	maintained	as	part	of	a	separate	collection	of	shaders	while	a	shader	contained	in
the	text	editor	is	a	part	of	your	.blend	file	and	will	be	saved	with	the	rest	of	your	scene.	Blenders
text	editor	is	sufficient	for	small	shaders	but	for	larger	shaders	using	an	external	editor	is	often
preferable	and	if	you	download	shaders	from	the	Shaders	directory	in	the	code	accompanying	this
book	you	can	select	External	and	use	the	file	browser	that	opens	to	point	to	the	downloaded	file.

Select	External	and	click	on	the	text	field	to	open	a	file	browser,	choose
Shaders/firstshader.osl	and	confirm	your	choice	or	alternatively,	select	Internal,	copy	the
code	shown	below	to	the	internal	text	editor	and	click	on	the	text	field	to	select	your	internal	text
file.

When	you	select	either	an	internal	text	buffer	or	an	external	file,	the	shader	is	compiled
automatically	and	if	everything	went	well	some	input	and	output	sockets	will	appear.

If	something	went	wrong	while	compiling	the	shader	a	short	message	is	shown	in	the	top	menu	bar

and	possibly	additional	information	is	shown	on	the	console.	If	that	happens	(and	if	you	write	a
shader	yourself	instead	of	using	a	downloaded	sample	shader	this	is	very	likely	to	happen	because
writing	a	new	non-trivial	shader	without	any	syntax	errors	in	one	go	is	highly	improbable),	fix	the
errors	and	click	the	recompile	button	(the	button	on	the	right	side	of	a	script	node	next	to	the	text
field.

firstshader.osl	is	a	shader	with	just	one	input	socket,	a	color	(and	hence	shown	with	a	yellow
dot)	and	one	output	socket,	also	a	color.	You	may	connect	its	output	socket	to	the	color	input	of	the

11

diffuse	shader	of	your	material	as	shown	in	the	screen	shot.

If	you	now	select	'Rendered'	in	the	3d	view	menu

you	see	that	the	shader	has	taken	the	default	bright	white	input	color	and	darkened	it	significantly.
Lets	have	a	look	a	the	code	for	firstshader.osl	and	see	how	this	has	come	about:

01. shader darken(
02. color In = 1,
03. output color Out = 1
04.){
05. Out = In * 0.5;
06. }

Note	that	the	line	numbers	preceding	the	code	are	for	reference	only	and	not	part	of	the	shader
code.

The	first	line	declares	a	generic	shader	called	darken	(there	are	more	types	of	shader	in	OSL	but
not	all	are	currently	supported	by	Blender.	Most	shaders	in	this	book	are	defined	as	generic
shaders	with	the	shader	keyword.	When	we	encounter	different	shaders	later	on	their	differences
will	be	explained).

A	shader	looks	like	a	function	with	parameters	and	the	second	line	defines	a	input	parameter	called
In.	The	type	of	this	parameter	is	color	(one	of	the	basic	types	of	OSL)	and	its	default	value	is	1,
meaning	that	all	three	components	of	the	color	(red,	green	and	blue)	will	be	set	to	one	making	the
default	color	bright	white.

The	next	line	defines	a	parameter	Out,	which	is	also	a	color	with	the	default	set	to	1,	i.e.	white.	It	is
marked	as	an	output	parameter	by	the	output	keyword.	When	the	shader	is	compiled,	Blender	adds

12

sockets	to	the	node	for	each	parameter.	Input	parameters	will	appear	as	sockets	on	the	left	side	of
the	node	and	output	parameters	will	appear	on	the	right.	Blender	will	color	these	sockets	based	on
their	types,	with	yellow	for	color	parameters.

All	parameters	must	be	defined	with	a	default.	The	default	of	an	input	parameter	is	used	if	no	other
nodes	are	connected	to	this	socket.	If	an	input	socket	is	not	connected	its	value	can	be	changed	by
the	end	user	by	clicking	on	it.	Depending	on	the	type	of	socket	a	suitable	editor	will	pop	up,	for
example	a	color	picker	if	it	is	a	color.	A	value	of	an	unconnected	input	socket	can	even	be	animated
(by	inserting	a	key	frame	by	hovering	over	it	with	the	mouse	and	pressing	I),	just	like	almost
everything	else	in	Blender.

The	default	value	of	an	output	socket	is	used	if	nowhere	in	the	body	of	the	shader	a	value	is
assigned	to	it.

The	body	of	this	shader	consist	of	a	single	line	(line	5)	that	multiplies	the	In	value	by	0.5	and
assigns	it	to	the	Out	parameter.	Multiplying	a	color	by	a	single	value	will	multiply	each	component
by	that	value	so	in	this	example	we	darken	all	color	components	by	the	same	amount.

This	example	shader	is	of	course	about	as	simple	as	a	shader	can	be	and	maybe	not	all	that	useful
but	it	does	show	how	Blender	takes	care	of	much	of	the	work	of	making	a	new	node	usable	by
adding	sockets	with	appropriate	editors	to	the	new	node	based	on	the	types	of	the	input	and	output
parameters.

Troubleshooting

When	you	use	script	nodes	a	few	things	may	go	wrong	beside	your	script	having	syntax	errors.
Most	configuration	errors	won't	even	show	up	as	errors	on	the	console	and	often	all	you	see	then	is
that	your	material	appears	black	when	rendered.	The	most	common	ones	are:

you	cannot	add	a	script	node

when	you	click	add	in	the	node	editor	and	you	don't	have	a	choice	listed	called	'Script'	you
probably	forgot	to	select	Cycles	as	your	render	engine	because	the	internal	renderer	doesn't
support	script	nodes.	(In	Blender	versions	before	2.68	there	was	a	Script	entry	for	the	internal
editor	but	clicking	it	had	no	effect)

compilation	goes	well	but	the	material	shows	up	as	a	uniform	color

you	forgot	to	check	the	OSL	button	in	the	render	options

there	is	no	OSL	button	in	the	render	options

this	option	is	only	available	if	you	use	Cycles	as	your	render	engine	and	select	CPU	rendering

13

14

Data	types
Focus	areas

Simple	data	types	(numbers,	strings,	vectors,	colors)
Compound	data	types	(arrays)
User	defined	data	types	(structs)

OSL	has	several	data	types	that	may	be	used	to	represent	numerical	values	and	strings	but	also
things	like	points,	vector	or	collections	of	these	values.	This	section	gives	a	brief	overview	of	the
most	important	issues	to	get	you	started	quickly.	This	overview	is	by	no	means	complete:	for
details	you	best	refer	to	chapter	5	of	the	OSL	language	specification.

Simple	data	types

int

an	int	represents	positive	and	negative	integer	values.	All	integer	operations	found	in	most
programming	languages	are	supported	(including	modulo	%	and	the	bitwise	operators	and	&,	or	|
and	xor	^).	Integers	are	at	least	32	bits	wide	(i.e.	may	hold	values	about	±	2000,000,000	but
depending	on	your	platform	much	larger	64	bit	wide	integers	may	be	implemented.	Don't	depend
on	this	if	you	want	to	write	portable	shaders!).	An	int	is	also	used	as	a	boolean	value	where	0	equals
false	and	any	other	value	true	(OSL	doesn't	have	an	explicit	boolean	type.	In	fact	all	simple	types
may	be	used	as	boolean	values,	each	with	its	own	rules	for	which	values	are	considered	true.	In	this
book	we	stick	to	int	values	for	booleans.	Refer	to	the	OSL	language	specification	for	details).

example:

int a = 4;
int b = a * 5;

float

a	float	represents	positive	and	negative	fractional	values.	It	can	at	least	represent	values	as	small
1e-35	or	as	big	as	1e35	with	7	decimals	of	precision	(to	be	precise	it	is	at	least	a	32	bit	float
conforming	to	the	IEEE	specification.	On	some	platforms	this	may	be	a	64	bit	float	with	more
precision	and	a	wider	range	but	don't	depend	on	it	if	portability	is	important).	Anywhere	a	float	is
used	an	int	maybe	used	as	well;	it	will	be	automatically	converted	to	a	float.	All	the	usual
operations	are	supported	for	floats	and	there	is	whole	host	of	standard	functions	available	as	well,
including	trigonometric	functions,	exponentiation,	etc.

15

example:

float a = -1.4;
float b = sin(a*1e-3);

string

a	string	is	a	sequence	of	characters.	Its	main	use	is	in	specifying	filenames	of	textures.	The
operations	are	chiefly	limited	to	comparisons	but	a	fair	number	of	standard	functions	are	provided
as	well,	including	support	for	regular	expressions.

example:

string a = "filename.png";

void

Void	is	not	a	value	per	se	but	used	to	explicitly	signify	the	absence	of	a	value,	for	example	as	with	a
function	that	has	only	side	effects	but	doesn't	return	anything.

point	like	data	types

point	like	data	types	have	in	common	that	they	all	consist	of	three	floating	point	values	and	that
they	all	share	a	common	set	of	operations	like	multiplication	and	addition.	They	differ	in	subtle
details	under	some	conditions	but	for	now	we	can	treat	them	as	equal	but	with	a	name	that	relates
to	their	purpose.	The	components	of	a	point	like	data	type	can	be	accessed	with	an	index	that	starts
a	0	for	the	first	component.	Operations	between	a	point	like	type	and	a	float	will	perform	the
operation	on	all	three	components	individually.	This	includes	assignment:	in	the	code	below	we
assign	the	value	7	to	all	components	of	the	variable	b.

example:

point a = point(1,0,0);
point b = point(0,1,0);
vector v = a - b;
normal n = cross(a,b);
a[0] = 3;
b = 7;
b = b + v * 5;

point

a	point	is	used	to	represent	a	location	or	position	in	the	world,	such	as	the	location	of	the	object

16

being	shaded.	You	can	add	to	points	to	translate	them,	multiply	to	scale	them	or	call	the	built-in
function	rotate()	to	rotate	them	around	an	axis

vector

a	vector	represents	a	direction	or	a	line	segment	between	points.	It	is	possible	to	translate,	scale
and	rotate	them	in	the	same	way	as	points	and	OSL	provides	a	number	of	functions	to	perform
common	vector	operations	including	calculation	its	length,	normalizing	it	and	calculating	the	cross
and	dot	product	of	two	vectors	to	name	a	few.

These	functions	are	just	as	happy	to	accept	points	or	normals	but	most	often	we	think	of	these
functions	in	the	context	of	vectors.	Many	shaders	in	this	book	use	vectors	and	some	basic
understanding	of	them	is	necessary	but	in	most	cases	their	use	is	explained	in	detail.	Especially	the
first	few	shaders	that	we	will	encounter	in	the	the	next	chapter	introduce	not	only	how	to	use	OSL
as	a	language	but	will	implement	a	few	shaders	that	perform	some	basic	vector	operations	just	to
get	familiar.

normal

a	normal	is	a	vector	that	denotes	a	direction	perpendicular	to	something,	often	a	face	of	a	mesh.
Anything	you	can	do	with	a	point	or	a	vector	you	can	do	with	a	normal	as	well	but	because	the
direction	perpendicular	to	a	surface	plays	such	an	important	role	in	designing	shaders	its	useful	to
have	a	separate	name	for	such	a	vector.	(When	we	encounter	closures	(=	light	scattering	functions)
we	will	see	that	these	closures	define	which	fraction	of	the	incoming	light	is	reflected	relative	to
the	normal.	For	example	when	light	is	reflected	from	a	perfect	mirror	the	angle	of	the	reflected
light	relative	to	the	surface	normal	is	the	same	as	the	angle	of	the	angle	of	the	incoming	light
relative	to	the	surface	normal)

color

a	color	is	not	point	like	in	the	sense	that	it	has	a	geometrical	significance	but	it	does	have	three
components	(here	representing	the	red,	blue	and	green	components	of	a	color)	and	shares
operations	with	the	geometrical	types	like	indexing,	addition,	etc.	In	many	cases	none	of	the
components	will	have	a	value	greater	than	one	but	this	is	not	mandatory.

matrix

A	matrix	is	not	point	like	at	all	but	a	collection	of	4	x	4	floats	that	is	mainly	used	to	transform	point
like	data	types.	Because	OSL	provides	a	lot	of	standard	functions	for	point	like	types	such	as
rotation	and	transformations	between	different	vector	spaces,	we	will	not	use	the	matrix	type	in
this	book.

17

aggregate	types

If	we	want	to	manipulate	more	than	one	simple	value	as	one	item	we	need	some	way	to	aggregate
them.	For	this	purpose	OSL	offers	arrays	and	structs.

array

An	array	is	a	list	of	items	of	the	same	type.	Each	of	those	can	be	accessed	by	using	an	index	in	the
same	way	as	components	of	point	like	types	may	be	accessed.	The	length	of	an	array	is	fixed	once	it
is	declared.

example:

float a[4];
float b[3] = { 3, 4, 5 };
point c[5];
a[2]=b[1]*8;
int alength = arraylength(a);

Note	that	the	first	element	of	an	array	has	an	index	of	0.	In	the	first	line	we	define	an	array	a	with
four	elements.	The	b	array	is	defined	with	three	elements	and	they	are	each	initialized	to	a	value.
As	the	c	array	shows,	arrays	are	not	limited	to	float	values	but	may	be	point-like	types	as	well.

struct

A	struct	is	a	collection	of	items	of	different	types.	Each	of	those	can	be	accessed	by	name.	A	struct
is	somewhat	like	a	new	type:	Once	you	have	defined	a	struct	you	can	use	it	to	declare	variables.

example:

struct ray{
 point start;
 vector direction;
};

ray view = { point(0,0,0), vector(0,0,1) };
view.point[2] = 5;

18

Control	structures
Focus	areas

making	decisions,	if/else	statements
repeating	activities,	for	and	while	loops

Like	any	programming	language	worth	its	salt,	OSL	has	its	share	of	control	structures	to	make
decisions	and	repeat	actions.	These	control	structures	are	almost	identical	to	those	found	in	C	or
C++	and	are	documented	in	detail	in	the	language	specification.	In	this	section	we	give	a	short
overview	in	the	context	of	some	simple	shaders	to	get	a	feeling	for	what	is	possible.

Left	or	right,	you	decide

Making	decisions	and	generating	different	output	based	on	some	condition	is	present	in	almost
every	shader	but	the	most	trivial.	In	our	example	shader	we	want	to	produce	an	output	value	of	1	if
an	input	value	lies	between	to	given	limits.	Such	a	shader	node	might	be	used	for	example	to
produce	sharp	edged	areas	from	a	smooth	noise	input.	An	example	is	shown	in	the	image	together
with	a	node	setup.

	

The	code	that	implements	this	shader	is	shown	below:

The	code	is	available	in	Shaders/range.osl

01. shader range(
02. float Value = 0,
03. float Low = 0,
04. float High = 0,
05.
06. output float Fac = 0

19

07.){
08. if(Value >= Low && Value <= High){
09. Fac = 1;
10. }
11. }

The	shader	has	three	input	parameters:	the	Value	we	want	to	test	and	the	Low	and	High	values	that
specify	the	range	that	will	return	a	value	of	1.	The	result,	either	0	or	1,	is	returned	in	the	single
output	parameter	Fac.

The	body	of	the	code	consists	of	a	single	if	statement	(line	8).	An	if	statement	consists	of	an
expression	between	parentheses	and	body.	The	body	consists	of	a	single	statement	or	a	group	of
statements	between	curly	braces	and	is	only	executed	if	the	expression	of	the	if	statement
evaluates	to	non-zero.	Because	if	statements	may	be	nested	(the	body	may	contain	other	if
statements)	it	might	become	unclear	what	the	structure	of	the	code	is	so	in	this	book	we	always	use
the	curly	braces,	even	if	there	is	just	a	single	statement	in	the	body	to	clearly	indicate	which	piece
of	code	belongs	to	which	if	statement.

The	expression	of	an	if	statement	may	be	arbitrarily	complex.	Here	we	check	if	the	value	is	larger
or	equal	to	the	lower	limit	and	combine	this	with	a	check	to	see	if	the	value	is	less	than	or	equal	to
the	upper	limit.	The	&&	operator	(logical	and)	indicates	that	both	conditions	should	be	true.	A	list
of	all	operators	that	can	be	used	can	be	found	in	the	OSL	language	specification,	chapter	6.	If
expressions	are	complex	or	the	precedence	of	operators	makes	it	necessary,	parentheses	may	be
used	to	group	parts	of	the	expression.	In	this	case	we	assign	the	value	1	to	the	output	parameter
Fac	if	the	condition	is	true.

In	the	previous	example	we	assigned	a	default	value	to	an	output	parameter	and	changed	this	value
if	a	condition	was	met.	Sometimes	however	we	want	to	take	different	actions	if	the	condition	is	not
met.	For	this	purpose	the	if	statement	has	an	optional	else	part.

In	the	shader	presented	below	we	want	to	produce	three	different	output	colors,	depending	on	an
input	value	being	below,	inside	or	above	a	given	range.

20

	

The	code	for	the	shader	is	given	below	and	compared	to	the	range	shader	this	shader	has	three
extra	input	parameters,	the	colors	we	want	to	choose	from.	The	single	output	parameter	is	the
chosen	color.

Code	available	in	Shaders/colorrange.osl

01. shader colorrange(
02. float Value = 0,
03. float Low = 0,
04. float High = 0,
05. color LowColor = 0,
06. color MidColor = 0.5, // grey
07. color HighColor = 1,
08.
09. output color Color = 0
10.){
11. Color = LowColor;
12. if(Value >= Low && Value <= High){
13. Color = MidColor;
14. } else {
15. if(Value > High){
16. Color = HighColor;
17. }
18. }
19. }

The	first	line	assigns	LowColor	to	the	output	parameter	as	a	default.	The	if	statement	again	checks
whether	the	input	value	is	in	the	specified	range	but	if	this	not	the	case	the	else	part	(line	14)	is
executed.	This	else	part	contains	again	an	if	statement	that	checks	if	the	input	value	is	above	the
upper	value	if	the	range	and	if	so,	assigns	HighColor	to	the	output	parameter.	Note	that	in	this

21

example	again	none	of	the	curly	braces	in	the	if	statements	were	needed	but	we	used	them	anyway
together	with	consistent	indentation	to	avoid	confusion.

I	fear	I	might	be	repeating	myself

Making	decisions	is	a	fundamental	feature	of	a	programming	language	and	so	is	the	ability	to
repeat	an	action	a	given	number	of	times.	To	this	end	OSL	offers	the	for	statement	which	is	used	in
the	next	shader	to	produce	a	given	number	of	stripes.

Code	available	in	Shaders/stripes.osl

01. shader stripes(
02. point Pos = P,
03. int Number = 4,
04.
05. output float Fac = 0
06.){
07. float x = mod(Pos[0],1);
08.
09. int i;
10. for(i=1; i <= Number; i++){
11. if(x < (float)i/Number){
12. Fac = i % 2;
13. break;
14. }
15. }
16. }

The	input	parameters	of	the	stripes	shader	are	the	position	being	shaded	(Pos)	and	the	number	of
stripes	we	want	to	produce	(Number).	The	single	output	parameter	Fac	will	be	either	0	or	1	for
alternating	stripes.

22

	

In	the	body	of	the	shader	we	make	sure	that	the	value	of	the	x	coordinate	is	in	the	range	[0,1]	by
calculating	the	x	component	of	the	position	being	shaded	modulo	one.	This	guarantees	that	for
larger	values	of	x	the	pattern	that	we	generate	for	the	[0,1]	range	is	repeated.

The	for	statement	repeats	the	statements	in	its	body	as	often	as	specified	by	the	three	semi-colon
separated	expressions	between	parentheses	(line	10).	As	with	the	body	of	the	if	statement	the	curly
braces	are	optional	if	the	body	consists	of	a	single	statement	but	in	this	book	we	always	use	them.

The	first	expression	following	the	for	keyword	initializes	the	control	variable	i.	The	second
expression	is	a	condition	and	as	long	as	this	condition	is	true	the	body	of	the	for	statement	is
executed.	The	third	expression	is	evaluated	after	each	execution	of	the	body	and	is	used	to
increment	the	control	variable	by	1.	(The	expressions	in	a	for	statement	are	not	limited	to	ones
affecting	a	control	variable.	Details	can	be	found	in	the	language	specification)

The	body	of	the	for	statement	itself	consists	of	a	single	if	statement.	The	expression	in	this	if
statement	checks	if	the	x	coordinate	is	smaller	than	the	upper	limit	of	the	stripe	we	are	currently
checking.	For	example,	if	Number	is	4	(we	want	four	stripes)	the	first	time	we	check	this	expression
is	x < 1/4	(i	starts	counting	from	one	because	that	is	the	value	we	gave	it	in	the	initialization
expression	of	the	for	statement).	The	second	time	around	this	expression	is	x < 2/4	(because	after
the	first	execution	of	the	body	of	the	for	statement	the	control	variable	i	was	incremented	by	1).
Note	that	we	had	to	cast	the	i	variable	to	a	float	to	make	sure	that	the	division	resulted	in	a
fraction.	Had	we	not	done	this	we	would	have	been	dividing	integers	and	we	would	have	got	the
value	0	instead	of	a	fraction.

If	the	expression	evaluates	to	true,	we	assign	the	output	variable	Fac	the	value	of	the	control
variable	i	modulo	2.	This	will	alternate	between	0	an	1	depending	on	whether	i	is	even	or	odd.	If
the	expression	is	true	we	not	only	assign	a	value	to	the	output	parameter	but	stop	executing	the	for
statement	altogether.	This	is	done	with	the	break	statement.	If	we	would	execute	the	remaining

23

iterations	of	for	loop	the	test	would	evaluate	to	true	again	(if	x	is	smaller	than	1/4	it	is	also	smaller
than	2/4,	3/4,	etc.)	so	we	need	to	break	out	of	the	loop	to	prevent	assigning	the	wrong	value	to	the
output	parameter.

We	are	not	always	in	the	position	to	determine	beforehand	how	many	repetitions	are	needed.	In
those	cases	it	might	be	better	to	use	a	while	loop,	which	will	execute	its	body	as	long	as	an
expression	is	true.

In	this	example	shader	we	do	not	want	to	produce	a	fixed	number	of	stripes	but	strips	that	get
progressively	smaller	until	they	are	deemed	small	enough.	This	lower	limit	on	the	width	of	the
strips	is	an	input	parameter.

	

The	central	idea	in	the	implementation	presented	here	is	to	check	if	the	x-coordinate	is	below	a
certain	limit	and	if	not,	extend	this	limit	with	a	value	dx	and	check	again.	On	each	successive
iteration	this	value	dx	is	diminished	by	a	quarter	until	it	is	smaller	than	input	parameter	Limit.

Code	available	in	Shaders/smallerstripes.osl

01. shader smallerstripes(
02. point Pos = P,
03. float Limit = 0.01,
04.
05. output float Fac = 0
06.){
07. float x = mod(Pos[0],1)*2;
08. float dx = 0.5;
09. float xlimit = dx;
10.
11. float ActualLimit =

24

12. Limit>0.001 ? Limit : 0.01;
13. while(dx >= ActualLimit){
14. if(x < xlimit){
15. break;
16. }
17. Fac = abs(Fac-1);
18. dx *= 0.75;
19. xlimit += dx;
20. }
21. }

To	prevent	an	endless	loop	we	check	if	Limit	is	larger	than	some	small	value	and	if	so,	assign	it	to
the	variable	ActualLimit.	If	not	we	take	0.001	as	a	safe	minimum.	There	are	two	things	worth
noting	here:	We	need	this	extra	variable	ActualLimit	because	an	input	parameter	like	Limit	is	read
only,	we	cannot	change	its	value.	Also	you	might	wonder	what	the	strange	expression	on	the	right
hand	side	of	the	assignment	does	(line	12).	This	is	in	fact	just	an	if	statement	disguised	as	an
expression,	an	idiom	directly	copied	from	the	C	language.	The	value	of	the	expression	a ? b : c	is
equal	to	b	if	a	is	true	(non	zero)	and	c	if	a	is	false.

The	while	statement	consists	of	an	expression	between	parentheses	and	a	body	(line	13).	The	body
is	executed	as	long	as	the	expression	is	true.	The	body	might	consist	of	a	single	statement	or
several	statements	enclosed	in	curly	braces.	For	clarity	we	will	always	use	curly	braces,	just	as	we
do	for	if	and	for	statements.

The	body	of	the	while	loop	contains	an	if	statement	that	checks	if	the	x-coordinate	is	below	the
current	limit.	If	so,	we	break	out	of	the	while	loop.	Since	there	are	no	statements	following	the
while	loop	this	means	that	the	output	parameter	Fac	will	hold	whatever	value	it	is	holding	at	that
instant.	Therefore,	if	the	x-coordinate	was	not	below	the	current	limit	we	must	not	only	extend	the
limit	against	which	we	will	check	in	the	next	iteration	but	also	flip	the	value	of	Fac.	Fac	is	a	floating
point	value	and	the	expression	abs(Fac-1)	is	one	way	to	convert	a	value	from	0	to	1	and	vice	versa.

The	final	two	lines	of	the	body	shorten	the	width	dx	of	the	stripe	by	25%	and	add	this	width	to	the
xlimit	variable.

25

This is the end of the sample.

If you would like to purchase the full version or if you are interested in my other books, please
visit

https://cgcookiemarkets.com/vendor/varkenvarken/

https://cgcookiemarkets.com/vendor/varkenvarken/

