
Page	2



This is a sample of my book 

 

Blender Add-on Cookbook 

A cookbook with useful programming recipes for Blender add-ons 

 

If you like to buy a full copy, please visit my Blender Market store: 

https://blendermarket.com/creators/varkenvarken 

In the store you will also find a more gentle introduction to add-ons called  

Creating Add-ons for Blender, a practical primer. 

https://blendermarket.com/creators/varkenvarken


Table	of	Contents

Introduction 5
Information 6
Adding	an	object	to	a	scene 9
Selecting	connected	vertices 13
Add	a	modifier	to	an	object 18
Add	a	vertex	group	to	an	object 21
Change	vertex,	edge	and	face	properties 27
Change	vertex,	edge	and	face	data	layers 36
Create	a	Cycles	material 44
Add	a	particle	system	to	an	object 47
Create	a	property	selection	drop	down 51
Make	a	function	available	to	pydrivers 55
Show	a	progress	bar 58
Showing	an	info	message 63
Show	hints	in	an	area	header 66
Configuration	parameters	for	add-ons 69
Defining	shortcut	keys 73
Use	Numpy	to	accelerate	vertex	manipulation 77
Adding	nodes	to	materials 82
Combining	nodes	into	frames 87
Add	an	operator	to	a	menu 93
Adding	persistent	properties	to	objects 97
Adding	sub-menus	to	existing	menus 103
Drawing	using	OpenGL 107
Using	a	panel	to	control	a	modal	operator 114
Getting	pixel	values	using	OpenGL 118
Converting	between	world	and	object	coordinates 122
Using	kd-trees	to	speed	up	intersection	tests 127
Converting	2d	screen	coordinates	to	3d	world	coordinates 132
Converting	3d	coordinates	to	2d	screen	coordinates 136
Create	a	modal	operator 141
Using	pass	through	in	a	modal	operator 144

Page	183



Change	the	cursor	in	a	modal	operator 147
Package	add-ons	with	more	than	one	module 150
Bundling	external	assets	with	your	add-on 153
Adding	custom	icons	to	menu	entries 156
Window	management	in	Blender 161
Creating	a	curve	through	objects 165
Parenting	objects	to	curve	vertices 171
Acknowledgments 176

Page	184



Blender	Add-on	Cookbook

By	Michel	Anders

Copyright	2017	Michel	Anders

Blender	Market	Edition

								

Blender	Market	Edition,	License	Notes

This	ebook	is	licensed	for	your	personal	enjoyment	only.	This	ebook	may	not	be	re-sold	or
given	away	to	other	people.	If	you	would	like	to	share	this	book	with	another	person,

please	purchase	an	additional	copy	for	each	recipient.	If	you’re	reading	this	book	and	did
not	purchase	it,	or	it	was	not	purchased	for	your	use	only,	then	please	return	to

blendermarket.com	and	purchase	your	own	copy.	Thank	you	for	respecting	the	hard	work
of	this	author

Page	4



Introduction
In	the	last	couple	of	year	I	have	created	numerous	add-ons	and	while	researching	and
developing	these	add-ons	I	encountered	all	sorts	of	different	issues	that	where	not	always
very	straightforward	to	solve.

Blender	has	of	course	extensive	documentation	on	its	Python	API	and	a	helpful	community
as	well	but	sometimes	it	nevertheless	took	quite	some	time	to	figure	something	out.

So	I	decided	to	document	these	issues	and	bundle	then	into	this	book,	where	you	will	find
quite	a	collection	of	solutions	to	commonly	occurring	issues.	Some	are	obvious	once	you
see	and	understand	them,	others	showcase	subtleties	that	often	prove	to	cause	trouble	in
unexpected	places	if	you	are	not	aware	of	them.

I	have	done	my	best	to	provide	not	just	solutions	but	accompany	them	with	detailed
explanations	as	well.	Also,	where	appropriate	I	have	included	references	to	all	sorts	of
documentation,	often	the	most	relevant	spot	in	the	Blender	Python	API	docs,	just	to	save
you	from	an	endless	hunt	for	the	right	information.	An	index	of	terms	is	also	provided.

Page	5



Who	is	this	book	for?

Code	availability

Information

This	book	is	for	add-on	developers	who	want	to	go	one	step	further	and	add	a	professional
touch	to	their	creations	or	want	to	add	functionality	that	isn't	so	straightforward	to
implement.

You	should	have	a	good	understanding	of	Python	and	have	some	knowledge	of	writing
Blender	add-ons	already.	This	is	a	cookbook	in	the	sense	that	it	provides	small	pieces	of
code	that	are	aimed	at	solving	a	particular	problem	but	if	you	want	a	more	general
introduction	you	could	consider	my	book	Creating	add-ons	for	Blender.

The	code	in	the	book	is	presented	as	code	snippets	that	will	not	run	on	their	own.	Typically
just	the	execute()	function	of	an	operator	is	shown.	However,	to	spare	you	the	effort	of
typing	over	many	lines	of	code,	each	recipe	refers	to	a	file	that	you	can	download	and	that
implements	a	small	but	complete	add-on	that	uses	the	code	shown	in	the	snippet,	so	you
can	test	it	out	immediately.

All	code	examples	are	licensed	under	the	GPL	and	available	from	this	GitHub	repository:

https://github.com/varkenvarken/blenderaddon-cookbook.

Each	recipe	contains	individual	references	to	the	relevant	code	but	you	can	also	download
all	code	a	a	single	.zip	file	by	clicking	on	the	'Clone	or	download'	button	and	selecting
'Download	as	.zip':

All	code	is	tested	against	the	latest	version	of	Blender	(2.78a	at	time	of	writing)

Page	6

https://github.com/varkenvarken/blenderaddon-cookbook


Conventions	used	in	this	book

Pythonic	code

About	the	author

Code	snippets	are	shown	as	follows

def·myfunction(x):

····y·=·x·*·x

····return·y

Function	or	class	names	used	in	the	running	text	are	shown	in	bold:	myfunction().

The	recipes	in	this	book	focus	on	illustrating	concepts	relevant	to	writing	Blender	add-ons.
We	do	strive	to	keep	the	code	readable	and	Pythonic	but	not	at	all	costs.	Sometimes	the
limitations	inherent	in	formating	source	code	in	books	force	us	to	sacrifice	the
recommendation	in	pep-8.	Also,	although	we	are	aware	of	the	distinctions,	we	use	the
terms	function	and	method	interchangeably.	And	as	for	values	passed	to	functions	we	follow
the	Klingon	definition.

Although	a	Blender	user	for	over	ten	years,	I	have	to	admit	that	I	am	an	enthusiastic	but
(very)	mediocre	artist	at	best.	I	discovered	however	that	I	really	enjoyed	helping	people
out	with	programming	related	questions	and	a	couple	of	years	ago	when	Packt	Publishing
was	looking	for	authors	on	the	BlenderArtists/Python	forum	I	stepped	in.

So	far	this	has	resulted	in	several	books	in	print:

Blender	2.49	Scripting,	ISBN	9781849510400,	Published	by	Packt	Publishing	in	April	2010.

Python	3	Web	Development,	ISBN	9781849513746,	Published	by	Packt	Publishing	in	May
2011.

Recently	I	switched	to	self	publishing	and	my	third	book:	'Open	Shading	Language	for
Blender',	distributed	by	Smashwords,	major	retailers	and	Blender	Market,	was	the	first
result.

Page	7

http://docs.python-guide.org/en/latest/writing/style/
https://www.python.org/dev/peps/pep-0008/
http://www.klingon.org/resources/klingon_code.html
https://www.smashwords.com/profile/view/varkenvarken


My	latest	book	is	called	'Creating	add-ons	for	Blender'	which	gives	a	broader	and	more
gentle	introduction	to	Blender	add-ons	than	this	book.

I	maintain	a	blog	on	Blender	related	things,	'Small	Blender	Things'	(blog.michelanders.nl)
and	I	keep	an	eye	on	the	coding	forums	at	http://www.blenderartists.org/forum/	where
you	can	also	contact	me	via	private	message	if	you	like,	my	nickname	there	is
'varkenvarken'.

I	also	offer	some	Blender	add-ons	on	BlenderMarket,	the	first	one	was	called	WeightLifter,
a	vertex	group	tool,	but	now	accompanied	by	SpaceTree	Pro,	a	environment	aware	tree
modeler,	and	IDMapper,	a	tool	to	create	ID-maps	based	on	smart	heuristics.	If	you	like	you
can	have	a	look	at	my	Blender	Market	store	to	see	what's	on	offer.

I	live	in	a	small	converted	farm	in	the	southeast	of	the	Netherlands	where	we	raise	goats
for	a	hobby.	We	also	keep	a	few	chickens	and	the	general	management	of	the	farm	is	left	to
our	cats.	This	arrangement	leaves	me	with	with	enough	time	to	write	the	occasional	book.

Page	8

http://blog.michelanders.nl/
http://www.blenderartists.org/forum/
https://blendermarket.com/creators/varkenvarken


Intro

Explanation

Create	a	property	selection	drop	down

In	many	situations	you	might	want	your	operator	to	let	the	user	pick	something	from	a	list
of	choices.	If	these	choices	refer	to	Blender	items,	like	objects,	meshes,	uv-maps,	bones,
modifiers,	etc.	we	can	use	the	prop_search()	function	of	a	layout	object	to	tailor	the
draw()	function	of	our	operator	in	a	single	line	of	code.	In	doing	so	we	no	only	create	an
easy	to	use	list	of	choices	but	also	prevent	the	user	from	the	mistakes	that	are	possible
when	entering	a	choice	by	hand.

In	this	recipe	we	create	a	simple	operator	that	lets	you	select	an	object	and	that	will	then
position	the	active	object	right	next	to	this	chosen	object	on	the	x-axis.	The	selection	box
that	lets	the	user	choose	an	object	is	presented	with	the	help	of	the	prop_search()
function.

operator	properties,	prop_search,	draw,	bpy_props_collection,
StringProperty

When	you	use	a	prop_search()	function	the	result	of	the	user	selection	needs	to	be	stored
in	a	StringProperty

····other·=·StringProperty(name="Other·object")

To	control	the	way	the	operator	properties	are	displayed	we	provide	an	implementation	of
the	draw()	function	in	our	operator	class.	The	string	property	doesn't	need	to	be	displayed
but	the	search	widget	itself	does

····def·draw(self,·context):

········layout·=·self.layout

Adding	a	widget	that	lets	the	user	select	an	object	or	anything	else	from	a

Page	51



bpy_props_collection	is	done	with	the	prop_search()	function.	This	function	takes	a
reference	to	the	current	operator,	the	name	of	the	StringProperty	to	store	the	selection
in	(in	this	case	'other'),	a	reference	to	an	object	and	the	name	of	the
bpy_props_collection	to	list.	In	this	case	we	want	the	user	to	select	an	object	so	our	basis
is	bpy.data	and	the	attribute	we	interested	in	is	objects

········layout.prop_search(self,'other',bpy.data,'objects')

In	this	case	this	will	result	in	a	list	of	objects	that	will	displayed	in	a	drop	down.	The	actual
choice	(the	name	of	the	chosen	object)	will	be	stored	in	the	other	property.

This	is	a	very	versatile	way	to	present	choices	because	many	things	in	Blender	are	of	the
type	bpy_props_collection.	For	example	to	present	the	user	with	a	list	of	uv-maps	for
the	active	mesh	object,	you	could	simply	write
layout.prop_search(self,'uvmap',context.object.data,'uv_layers')	assuming	of
course	you	have	a	StringProperty	defined	in	your	operator	that	is	called	'uvmap'.

Now	with	the	selection	of	another	object	available,	the	execute()	function	can	use	this
information	to	retrieve	the	actual	chosen	object

····def·execute(self,·context):

········if·self.other·in·bpy.data.objects:

············other·=·bpy.data.objects[self.other]

The	final	step	is	to	alter	the	location	of	the	active	object	to	put	it	right	beside	the	chosen
object

Page	52



Key	points

Code

See	also

Refs

············ob·=·context.active_object

············ob.location·=·other.location

············ob.location.x·+=·1

········return·{"FINISHED"}

You	can	provide	a	drop	down	selection	of	any	bpy_props_collection	in	Blender
Many	collections	of	items	in	Blender	are	of	the	type	bpy_props_collection
including	all	the	items	in	bpy.data	and	things	like	vertex	groups	or	uv-maps	in
objects
A	StringProperty	is	needed	to	hold	the	result	of	the	user	selection
The	prop_search	methoud	of	a	Layout	object	will	take	care	of	the	presentation

If	you	install	this	add-on	a	menu	item	Object→Propsearch example	will	be	added	the	3d-
view	in	object	mode.

GitHub:	propsearch.py

Adding	persistent	properties	to	objects

Property	collections	and	the	property	selection	drop-down

https://docs.blender.org/api/blender_python_api_current/bpy.types.bpy_prop_collection.html

https://docs.blender.org/api/blender_python_api_current/bpy.types.UILayout.html?
bpy.types.UILayout.prop_search#bpy.types.UILayout.prop_search

Page	53

https://github.com/varkenvarken/blenderaddon-cookbook
https://docs.blender.org/api/blender_python_api_current/bpy.types.bpy_prop_collection.html
https://docs.blender.org/api/blender_python_api_current/bpy.types.UILayout.html?bpy.types.UILayout.prop_search#bpy.types.UILayout.prop_search


Intro

Explanation

Create	a	modal	operator

A	modal	operator	is	an	operator	that	keeps	on	running	after	it	is	created.	Unlike	a	non-
modal	operator	that	performs	some	specific	function	and	then	terminates,	a	modal
operator	can	keep	on	interacting	with	the	user.	Examples	of	modal	operators	are	the
grab/move	and	scale	operators.

To	perform	this	interaction	a	modal	operator	should	have	a	modal()	method	that	is	called
every	time	an	event	occurs.	Examples	of	events	are	mouse	movements	or	key	presses	but
timers	can	also	create	events	at	fixed	intervals.

If	a	modal	operator	is	added	to	a	menu	it	starts	its	activity	when	the	invoke()	method	is
called	and	the	operator	is	registered	to	receive	events.

In	this	simple	recipe	we	will	create	a	modal	operator	that	once	started,	keeps	on	showing
each	event	in	the	area	header	until	the	right	mouse	button	is	clicked	or	the	 Esc-key
pressed.	This	way	you	can	get	an	idea	of	what	kind	of	events	you	may	act	upon.

modal	operator,	event

The	invoke()	function	of	a	modal	operator	is	called	when	someone	clicks	a	modal
operator	that	has	been	added	to	a	menu.	It	can	perform	any	initialization	activity	but	what
really	makes	an	operator	modal	is	when	it	registers	itself	as	a	modal	handler	with	the
window	manager.	This	will	cause	its	modal()	method	to	be	called	each	time	some	event
occurs.	Note	that	the	invoke()	method	is	also	passed	an	event,	which	makes	it	possible	to
bind	a	modal	operator	to	different	shortcut	keys	for	example	and	perform	an	initialization
based	on	the	actual	shortcut	key	pressed,	because	the	event	passed	to	the	invoke()
method	is	actually	this	first	key	press	or	mouse-click

Page	141



Key	points

····def·invoke(self,·context,·event):

········context.window_manager.modal_handler_add(self)

········return·{'RUNNING_MODAL'}

Once	registered	as	a	modal	handler	the	modal()	method	is	called	each	time	an	event
occurs.	The	event	argument	contains	a	type	and	a	value	and	additional	information	based
on	the	type.	For	mouse	events	it	will	also	have	the	mouse	coordinates.	Here	we	display	a
few	relevant	attributes	in	the	area	header	so	you	can	experiment	to	see	what	kind	of
values	are	produced	by	different	events

····def·modal(self,·context,·event):

········context.area.header_text_set(

············"event:·{e.type}·{e.value}·({e.mouse_x},{e.mouse_y})"

························.format(e=event))

········context.area.tag_redraw()

A	common	convention	for	modal	operators	is	to	cancel	their	activity	if	either	the	 Esc-
key 	is	pressed	or	the	right	mouse	button	is	clicked.	Here	we	check	for	this	scenario	and
reset	the	area	header	before	returning	{'CANCELLED'}	to	signal	we	are	done.	(Note	that
the	return	value	is	a	set	with	a	single	string	)

········if·event.type·in·{'RIGHTMOUSE',·'ESC'}:

············context.area.header_text_set()

············context.area.tag_redraw()

············return·{'CANCELLED'}

For	all	other	events	we	just	keep	on	running,	something	we	signal	by	returning
{'RUNNING_MODAL'}

········return·{'RUNNING_MODAL'}

In	another	recipe	we	will	see	that	it	is	also	possible	to	pass	through	some	events	so	that
other	operators	may	act	on	them.

Page	142



Code

See	also

Refs

A	modal	operator	installs	a	modal	handler	that	keeps	on	acting	after	the	initial	call
This	is	commonly	the	modal()	method	of	the	operator	itself
This	method	is	called	every	time	an	event	happens
Events	can	be	mouse	actions,	key	presses	or	timer	events
A	modal	handler	may	remove	itself	by	returning	{'CANCELED'}	or	keep	on	running
by	returning	{'RUNNING_MODAL'}

This	add-on	installs	a	modal	handler	when	you	click	on	Add→Mesh→Modal Operator	in	the
3d-view	in	object	mode.

GitHub:	modaloperator.py

Using	pass	through	in	a	modal	operator

Show	hints	in	an	area	header

More	on	the	difference	between	the	Operator	methods	poll(),	invoke(),	execute(),
draw()	&	modal()

http://blender.stackexchange.com/questions/19416/what-do-operator-methods

Page	143

https://github.com/varkenvarken/blenderaddon-cookbook
http://blender.stackexchange.com/questions/19416/what-do-operator-methods


Index

A
add-on	distribution	1

add-on	preferences	1

animation	1

area	1

area	header	1

attributes	1

B
base	1

bezier	splines	1

BMesh	1,	2

bpy_props_collection	1

C
cursor	1

curve	objects	1

custom	data	layer	1

custom	property	1

Cycles	1,	2

D
draw	1

draw	handler	1

driver	1

Page	178



E
edge	1,	2

EnumProperty	1

event	1

F
face	1,	2

foreach_get	1

foreach_set	1

frame	1

H
hotkey	1

I
icon	1

intersection	1

K
kd-tree	1

keymap	1

L
layers	1

library	1

loop	1

Page	179



M
material	1

median	1

menu	1,	2

Mesh	1

modal	1

modal	operator	1,	2,	3,	4,	5

modifier	1,	2,	3

module	1

N
Node	Wrangler	1

nodes	1,	2,	3

numpy	1

O
object	1

object	coordinates	1

object	parenting	1

object_utils	1

OpenGL	1,	2,	3,	4

operator	1

operator	properties	1

P
package	1

Panel	1,	2,	3

parameterized	object	1

Page	180



parenting	objects	1

particle	system	1,	2

pass	through	1

pixel	value	1

preview	collection	1

progress	bar	1

prop_search	1

property	1

PropertyGroup	1

pydriver	1

R
ray-casting	1

region	1

report()	1

S
scene	1

screen	1

screen	coordinates	1,	2

separator	1

shader	1

shortcut	1

space	1

StringProperty	1,	2

submenu	1

subsurface	modifier	1

T

Page	181



thumbnail	1

V
Vector	1

vertex	1,	2

vertex	group	1

W
window	1

window	manager	1

world	coordinates	1,	2,	3

world	matrix	1

Page	182



This is a sample of my book 

 

Blender Add-on Cookbook 

A cookbook with useful programming recipes for Blender add-ons 

 

If you like to buy a full copy, please visit my Blender Market store: 

https://blendermarket.com/creators/varkenvarken 

In the store you will also find a more gentle introduction to add-ons called  

Creating Add-ons for Blender, a practical primer. 

https://blendermarket.com/creators/varkenvarken

