

Creating	add-ons	for	Blender

By	Michel	Anders

Copyright	2016	Michel	Anders

Smashwords	Edition

				

Blender	Market	Edition,	License	Notes

This	ebook	is	licensed	for	your	personal	enjoyment	only.	This	ebook	may	not	be	re-sold	or	given
away	to	other	people.	If	you	would	like	to	share	this	book	with	another	person,	please	purchase
an	additional	copy	for	each	recipient.	If	you’re	reading	this	book	and	did	not	purchase	it,	or	it
was	not	purchased	for	your	use	only,	then	please	return	to	blendermarket.com	and	purchase

your	own	copy.	Thank	you	for	respecting	the	hard	work	of	this	author

2

Table	of	Contents

Introduction 3
Overview 3
Notes	on	code 4

A	Blender	add-on:	the	basics 5
Example:	move	an	object 5
The	anatomy	of	an	add-on 5

bl_info 5
An	Operator	class 7
The	execute()	function 7
Registering	and	adding	a	menu	entry 8

Distributing	and	installing	an	add-on 10

A	Blender	add-on:	more	complexity 11
Example:	Arranging	selected	objects	in	a	circle 11
The	add-on	information 11
Defining	an	operator	class 12
The	poll()	function 12
The	execute()	function 13
The	register()	and	unregister()	functions 14
Bundling	an	add-on	with	multiple	files 17

Adding	properties 18
Example:	a	configurable	radius 18
Adding	an	property 18
Example:	a	configurable	orientation 19
More	property	types 20
Working	with	the	property	values. 21
Layout 22
Presets 23

Working	with	meshes 25
Example:	Working	with	bmeshes 25
Creating	a	bmesh 25
Working	with	elements 25
Custom	Data	Layers 28
Loops	-	vertex	colors 28

Creating	meshes 33
Topics	covered 33

58

Example:	creating	a	ladder 33
The	Ladder	operator	and	its	properties 33
Adding	a	mesh	object	to	a	scene 35
Creating	mesh	geometry 37
Removing	doubles 39
Adding	modifiers 40
Smooth	shading 41

Parametric	objects 43
Example:	a	parametric	ladder 43
Defining	object	properties 44
The	Ladder	operator 45
A	panel	in	the	toolbar	section 47
A	better	ladder	mesh 49

Mesh	elements 49
Adding	the	stile 50
Adding	the	rung 52
Bridging	the	components 52
Duplication 53
Skewing 53

Animating	object	properties 54
Application	handlers 54

Additional	information 56
About	the	author 56
Acknowledgments 56
Additional	information	on	Blender	add-ons 57

59

Introduction
This	primer	on	writing	Blender	add-ons	aims	to	be	short	an	sweet	and	pretty	fast	paced.	This
means	that	we	cover	quite	a	lot	of	concepts	in	a	short	time	but	I	have	provided	links	to
additional	information	where	relevant.

You	also	need	to	have	some	experience	in	writing	Python	programs	but	other	than	that	you	will
find	that	writing	Blender	add-ons	is	surprisingly	simple.	Almost	anything	is	possible	due	to	the
large	amount	of	built-in	functionality	available	from	within	Python	and	this	huge	collection	of
classes	and	functions	might	be	a	little	bewildering	to	navigate	but	the	basics	of	a	Blender	add-on
are	easy	to	grasp	in	just	a	few	hours.

In	this	primer	you	will	start	with	an	almost	trivial	add-on	and	work	your	way	to	a	full	fledged
add-on	that	manipulates	meshes	and	is	fully	integrated	with	Blender	own	graphical	user
interface,	complete	with	user	configurable	properties	and	custom	icons.

Overview

In	chapter	1	we	will	introduce	the	basic	concepts	of	an	Operator	and	have	a	look	at	Blenders
data	model.	Here	we	will	learn	that	almost	anything	in	a	scene	is	accessible	to	an	add-on	and
how	to	add	information	to	a	Python	file	so	that	your	add-on	can	be	distributed	and	installed	by
other	people.	Even	though	this	first	add-on	is	trivial	it	will	be	fully	integrated	in	Blenders
menus.

Chapter	two	expands	on	the	basic	concepts	by	ensuring	that	our	add-on	can	only	be	used	in
meaningful	context.	It	also	shows	how	to	add	custom	icons	to	a	menu	and	explains	how	you	can
create	and	distribute	add-ons	that	consist	of	more	than	one	file.

Most	add-ons	offer	the	end	user	options	that	can	be	changed	to	change	the	behavior	of	the	add-
on.	These	options,	or	Properties	as	they	are	called	in	Blender	are	introduced	in	chapter	3	where
we	will	also	see	how	the	values	of	these	options	can	be	saved	in	so	called	presets.

In	chapter	4	we	have	a	look	at	mesh	manipulation.	We	discover	how	to	select	vertices	or	add
vertex	color.

Chapter	5	focuses	on	the	creation	of	mesh	objects	from	scratch.	It	introduces	Blenders	powerful
mesh	manipulation	library	BMesh	and	shows	how	to	add	data	layers	to	your	meshes	like	vertex
colors	and	uv-maps.

In	the	final	chapter	we	stay	with	meshes	but	show	how	we	can	create	parametric	objects,
objects	that	store	the	values	that	where	used	to	create	them	along	with	all	the	other	data.	This

3

makes	it	possible	to	recreate	or	tweak	complex	objects	even	after	they	were	stored	or	copied
and	creates	the	opportunity	to	animate	these	values.

Notes	on	code

All	the	example	code	is	available	for	download	and	each	chapter	contains	a	link	to	the	relevant
code.

Formatting	code	is	sometimes	difficult,	especially	in	Python	where	indentation	is	relevant.	I	did
my	best	not	to	mangle	the	code	in	the	examples	listed	in	the	book	but	when	in	doubt	make	sure
you	check	the	code	that	is	available	for	download	first.

A	special	note	for	Python	purists:	I	use	the	terms	function,	member	function	and	method
interchangeably.	Even	though	some	people	might	argue	that	there	are	differences	in	their	exact
meaning	I	feel	this	would	detract	from	the	subject,	which	is	creating	add-ons	for	Blender.	The
same	goes	for	pep-8	compliance:	due	to	formatting	requirements	in	books,	it	is	not	feasible	to
adhere	to	pep-8	all	the	time.

Have	fun!

4

A	Blender	add-on:	the	basics
Almost	anything	is	possible	when	writing	add-ons	for	Blender	but	to	get	a	good	understanding
we	start	simple.	Nevertheless	the	first	add-on	we	will	create	can	be	installed	and	removed	just
like	any	other	add-on,	provides	some	extra	functionality	in	the	form	of	an	operator	and	creates
a	menu	entry	so	the	user	can	easily	access	this	new	functionality.

Topics	covered

Providing	information	about	the	add-on
Defining	an	operator
Registering	an	operator
Creating	a	menu	entry

Example:	move	an	object

The	new	functionality	we	will	provide	with	our	first	add-on	is	minimal:	the	add-on	will	create	a
menu	entry	in	the	Object	menu	of	the	3D	view	that	will	move	the	active	object	one	unit	along
the	x-axis.	This	will	not	make	this	add-on	the	next	killer	app	but	will	illustrate	nicely	how	easy
it	is	to	provide	extra	functionality	that	is	fully	integrated	in	Blender's	existing	user	interface.

You	do	not	have	to	type	every	line	of	code	shown	in	this	chapter	yourself:	the	code	is	available
for	download	from	GitHub.	It	is	called	move_01.py

The	anatomy	of	an	add-on

In	its	simplest	form	an	add-on	is	a	single	Python	file	that

provides	some	general	information	about	the	add-on,	like	its	name	and	version,
defines	some	code	to	perform	an	action,	often	in	the	form	of	an	operator,	and
makes	sure	this	operator	is	registered	so	that	it	can	be	used.

We'll	have	a	look	at	each	of	these	components	in	turn.

bl_info

The	general	information	about	the	add-on	is	defined	in	a	dictionary	with	the	name	bl_info
which	is	normally	located	at	the	beginning	of	the	file.

5

https://github.com/varkenvarken/CreatingAdd-onsForBlender/blob/master/move_01.py

bl_info = {

 "name": "MoveObject",

 "author": "Michel Anders (varkenvarken)",

 "version": (0, 0, 20160104121212),

 "blender": (2, 76, 0),

 "location": "View3D > Object > Move",

 "description": "Moves and object",

 "warning": "",

 "wiki_url": "",

 "tracker_url": "",

 "category": "Object"}

Each	key	provides	Blender	with	specific	information	about	our	add-on	although	not	all	are
equally	important.	Most	of	the	information	is	used	in	the	user	preferences	dialog	and	helps	the
user	to	find	and	select	an	installed	add-on.

name
A	short	and	memorable	name

author
Always	nice	if	people	can	credit	you	for	your	work

version
The	version	of	your	add-on.	You	can	use	any	numbering	scheme	you	like,	as	long	as	it	is	a
tuple	of	three	integers.	I	simply	use	a	time	stamp	in	the	last	position	but	you	might	choose
for	a	more	structured	scheme.

blender
The	minimal	Blender	version	needed	by	this	add-on.	Again	a	tuple	of	three	integers.	Even	if
you	expect	your	add-on	to	work	with	older	versions	it	might	be	a	good	idea	to	list	the
earliest	version	that	you	actually	tested	your	add-on	with!

category
The	category	in	the	user	preferences	your	add-on	is	grouped	under.	Our	add-on	will
operate	on	an	object	so	it	makes	sense	to	add	it	to	the	Object	category.

location
Where	to	find	the	add-on	once	it	is	enabled.	This	might	a	reference	to	a	specific	panel	or	in
out	case,	a	description	of	its	location	in	a	menu.

description
A	concise	description	of	what	the	add-on	does.

warning

6

If	this	is	not	an	empty	string,	the	add-on	will	show	up	with	a	warning	sign	in	the	user
preferences.	You	might	use	this	to	mark	an	add-on	as	experimental	for	example.

wiki_url
If	you	provide	on-line	documentation,	you	can	provide	a	url	here.	It	will	be	a	click-able
item	in	the	user	preferences.

tracker_url
If	your	add-on	ends	up	as	a	bundled	part	of	Blender	it	will	have	its	own	bug	tracker	entry
associated	with	it	and	this	key	will	provide	a	pointer	to	it.

An	Operator	class

Most	add-ons	define	new	operators,	classes	that	implement	specific	functionality.	Our
MoveObject	add-on	is	no	exception	and	will	implement	a	single	operator	to	do	the	actual
moving.

The	actual	definition	of	the	operator	takes	the	form	a	class	that	is	derived	from
bpy.types.Operator

import bpy

class MoveObject(bpy.types.Operator):

 """Moves an object"""

 bl_idname = "object.move_object"

 bl_label = "Move an object"

 bl_options = {'REGISTER', 'UNDO'}

The	docstring	at	the	start	of	the	class	definition	will	be	used	as	a	tooltip	anywhere	this	operator
will	be	available,	for	example	in	a	menu,	while	the	bl_label	defines	the	actual	label	used	in	the
menu	entry	itself.	Here	we	kept	both	the	same.	Operators	will	be	part	of	Blender's	data,	and
operators	are	stored	in	the	module		bpy.ops.	This	bl_idname	will	make	sure	this	operator's
entry	will	be	called	bpy.ops.object.move_object.	Operators	are	normally	registered	in	order
to	make	them	usable	and	that	is	indeed	the	default	of	bl_options.	However,	if	we	also	want	the
add-on	to	show	up	in	the	history	so	it	can	be	undone	or	repeated,	we	should	add	UNDO	to	the	set
of	flags	that	is	assigned	to	bl_options,	as	is	done	here.

The	execute()	function

An	operator	class	can	have	any	number	of	member	functions	but	to	be	useful	it	normally

7

overrides	the	execute()	function:

 def execute(self, context):

 context.active_object.location.x += 1

 return {'FINISHED'}

The	execute()	function	is	passed	a	reference	to	a	context	object.	This	context	object	contains	a
among	other	things	an	active_object	attribute	which	points	to,	you	guessed	it,	Blenders	active
object.	Each	object	in	Blender	has	a	location	attribute	which	is	a	vector	with	x,	y	and	z
components.	Changing	the	location	of	an	object	is	as	simple	as	changing	one	of	these
components,	which	is	exactly	what	we	do	in	line	2.	The	execute()	function	signals	successful
completion	by	returning	a	set	of	flags,	in	this	case	a	set	consisting	solely	of	a	string	FINISHED.

Registering	and	adding	a	menu	entry

Defining	an	operator	is	not	in	itself	enough	to	make	this	operator	usable.	In	order	for	the	user
to	find	and	use	an	operator,	for	example	by	pressing	SPACE	in	the	3D	view	window	and	typing
the	label	of	the	operator,	we	must	register	the	operator.	Adding	a	registered	operator	to	a	menu
requires	a	separate	action.

def register():

 bpy.utils.register_module(__name__)

 bpy.types.VIEW3D_MT_object.append(menu_func)

def unregister():

 bpy.utils.unregister_module(__name__)

 bpy.types.VIEW3D_MT_object.remove(menu_func)

def menu_func(self, context):

 self.layout.operator(MoveObject.bl_idname,

 icon='MESH_CUBE')

When	we	check	the	Enable an add-on	check-box	in	the	user	preferences,	Blender	will	look	for
a	register()	function	and	execute	it.	Likewise,	when	disabling	an	add-on	the	unregister()
function	is	called.	Here	we	use	this	to	both	register	our	operator	with	Blender	and	to	insert	a

8

menu	entry	that	refers	to	our	operator.

The	bpy.utils.register_module()	function	will	register	any	class	in	a	module	that	has
REGISTER	defined	in	its	bl_options	set.	In	order	to	create	a	menu	entry	we	have	to	do	two
things:	create	a	function	that	will	produce	a	menu	entry	and	append	this	function	to	a	suitable
menu.

Now	almost	everthing	in	Blender	is	available	as	a	Python	object	and	menus	are	no	exception.
We	want	to	add	our	entry	to	the	Object	menu	in	the	3D	view	so	we	call
bpy.types.VIEW3D_MT_object.append()	and	pass	it	a	reference	to	the	function	we	define	in
the	highlighted	line.	How	do	we	know	how	this	menu	object	is	called?	If	you	have	checked	File
⇒ User preferences ⇒ Interface ⇒ Python Tooltips	the	name	of	the	menu	will	be	shown
in	a	tooltip	when	you	hover	over	a	menu.

From	the	image	above	we	can	see	that	we	can	use	bpy.types.VIEW3D_MT_object.append()	to
add	something	to	the	Object	menu	because	VIEW3D_MT_object	is	shown	in	the	balloon	text.

Note	that	the	menu_func()function	does	not	implement	an	action	itself	but	will,	when	called,
append	a	user	interface	element	to	the	object	that	is	passed	to	it	in	the	self	parameter.	This	user
interface	element	in	turn	will	interact	with	the	user.

Here	we	will	simply	add	an	operator	entry	(that	is,	an	item	that	will	execute	our	operator	when
clicked).	The	self	argument	that	is	passed	to	menu_func()	refers	to	the	menu.	This	menu	has	a
layout	attribute	with	an	operator()	function	that	we	pass	the	name	of	our	operator.	This	will
ensure	that	every	time	a	user	hovers	over	the	Object	menu,	our	operator	will	be	shown	in	the
list	of	options.	The	name	of	our	new	MoveObject	operator	can	be	found	in	its	bl_idname
attribute	so	that	is	why	we	pass	MoveObject.bl_idname.

The	name	of	the	entry	and	its	tooltip	is	determined	by	looking	at	the	bl_label	and	docstring
defined	in	our	MoveObject	class	and	the	icon	used	in	the	menu	is	determined	by	passing	an
optional	icon	parameter	to	the	operator()	function.	Once	added	our	menu	entry	will	look	like
this:

This	may	sound	overly	complicated	but	it	makes	it	possible	for	example	to	show	different	things

9

than	just	click-able	entries	in	a	menu	for	example	to	group	several	operators	in	a	box.

Distributing	and	installing	an	add-on

If	you	typed	in	all	the	code	snippets	in	this	chapter	and	saved	it	to	a	file	move_01.py	or
downloaded	the	complete	file	from	GitHub	the	add-on	can	now	be	installed	just	like	any	other
add-on:

Click	on	File ⇒ user preferences ⇒ Add-ons

Click	on	Install from file	(near	the	bottom	of	the	dialog)
Select	move_01.py	in	the	file	browser
Click	on	Install from file	(near	the	top	right	corner)
Enable	the	add-on	by	checking	the	box	after	of	its	name

If	you	want	to	find	the	add-on	later	on,	it	is	grouped	under	the	Object	category:

Summary

In	this	chapter	we	created	our	first	add-on.	Its	functionality	was	implemented	by	defining	an
operator	and	the	add-on	was	integrated	seamlessly	into	Blender's	user	interface	by	registering
the	operator	and	creating	a	menu	entry.	The	add-on	can	also	be	installed	by	any	user	from	the
user	preferences	because	we	added	proper	information	to	the	python	file	that	describes	the
add-on	in	a	manner	that	Blender	can	interpret.

This	first	add-on	is	still	very	simple	indeed.	In	the	next	chapter	we	will	expand	its	functionality
with	options	and	we	will	make	the	operator	more	robust.

10

A	Blender	add-on:	more	complexity
An	add-on	might	be	only	useful	in	a	certain	context	and	may	consist	of	more	than	one	file.	In
this	chapter	we	see	how	we	can	automatically	disable	a	menu	entry	based	on	certain	conditions
and	how	we	can	create	and	distribute	an	add-on	that	consists	of	more	than	a	single	file.	We	also
get	a	glimpse	of	Blender's	powerful	Vector	class	and	as	a	bonus	we'll	have	a	look	at	how	we	can
adorn	our	menu	entry	with	a	custom	made	icon.	And	while	doing	this	we	will	be	implementing
an	add-on	that	actually	might	be	considered	useful,	one	that	allows	the	user	to	arrange	a
selection	of	objects	into	a	circle.

Topics	covered

Enabling	an	operator	with	the	poll()	function
Working	with	Blender's	Vector	class
Distributing	an	add-on	with	multiple	files
Adding	custom	icons

Example:	Arranging	selected	objects	in	a	circle

In	the	previous	chapter	we	created	an	add-on	that	could	move	the	active	object	by	a	single
Blender	unit,	which	is	about	the	least	interesting	thing	imaginable.	In	this	chapter	we'll	get	a
little	bit	more	ambitious	and	create	and	add-on	that	arranges	any	number	of	selected	object	is	a
circle.	It	will	also	be	a	bit	more	sophisticated	as	the	menu	entry	will	only	be	enabled	when	we
are	in	object	mode	and	have	at	least	three	objects	selected.

The	step	we	take	to	implement	this	add-on	are	similar	to	the	one	we	created	in	the	previous
chapter:	we	provide	some	information	in	the	bl_info	dictionary,	define	an	operator	with	an
overridden	execute()	function	and	make	sure	this	operator	is	registered	and	added	to	a	meneu.

You	do	not	have	to	type	every	line	of	code	shown	in	this	chapter	yourself:	the	code	is	available
for	download	from	GitHub	(circle_02.zip)

The	add-on	information

In	order	to	allow	the	installation	of	our	add-on	we	need	a	proper	bl_info	definition	at	the	start
of	our	add-on:

11

https://github.com/varkenvarken/CreatingAdd-onsForBlender/blob/master/circle_02.zip?raw=true

bl_info = {

 "name": "CircleObjects",

 "author": "Michel Anders (varkenvarken)",

 "version": (0, 0, 201601061418),

 "blender": (2, 76, 0),

 "location": "View3D > Object > Circle",

 "description": "Arranges selected objects in a circle",

 "warning": "",

 "wiki_url": "",

 "tracker_url": "",

 "category": "Object"}

It	closely	mimics	the	information	for	our	Move	objects	add-on	as	we	want	it	to	appear	in	the
Objects	category	again.

Defining	an	operator	class

We	will	again	implement	an	operator,	so	our	definition	will	closely	resemble	the	the	operator
we	defined	in	the	first	chapter.	It	will	derive	from	bpy.types.Operator	and	we	will	give	it	a
proper	docstring,	bl_idname	and	bl_label

class CircleObjects(bpy.types.Operator):

 """Arrange selected objects in a circle in the xy plane"""

 bl_idname = "object.circle_objects"

 bl_label = "Circle objects"

 bl_options = {'REGISTER', 'UNDO'}

 scale = 100

We	also	define	a	class	variable	scale	which	is	just	a	fixed	value	for	now.	In	the	next	chapter	we
will	see	have	we	can	provide	the	end	user	with	an	option	to	change	this.

The	poll()	function

Trying	to	arrange	a	selection	of	objects	into	a	circle	would	be	useless	if	we	had	no	objects

12

This is the end of the sample.

If you would like to purchase the full version or if you are interested in my other books, please
visit

https://www.smashwords.com/books/view/655557

https://www.smashwords.com/books/view/655557

